Planet Battles: A New Land

Time limit	Memory limit
1 second	256 MB

Statement

You are an engineer working for a large interstellar mining company. Imperial officials have contracted your company to fabricate a large siliconite ventilation shaft for use in their newest superweapon, the Unalive Star. To produce enough raw materials, your scanners have brought you to a flat area of land where it detects vast siliconite deposits. The land can be modelled as a grid of N rows and N columns, where the cell on the c-th column and r-th row is written as (r, c). Exactly S of the squares in the grid are considered siliconite-rich.

Your mining tool of choice is the parsec ${ }^{1}$, which can excavate an area of land as long as:

1. All squares being mined are siliconite-rich.
2. At every column, the cells mined have to form a contiguous range. That is, if cells $\left(c_{1}, r_{1}\right)$ and cells $\left(c_{1}, r_{2}\right)$ are mined, then all cells $\left(c_{1}, r_{3}\right)$ have to be mined, for all $r_{1} \leq r_{3} \leq r_{2}$.
3. The cells mined at every column have to either contain or be completely contained by the cells mined in adjacent columns. That is, if cells $\left(c_{1}, r_{1}\right)$ to cells $\left(c_{1}, r_{2}\right)$ are the lowest and highest cells being mined in column c_{1}, and cells $\left(c_{1}+1, r_{3}\right)$ to $\left(c_{1}+1, r_{4}\right)$ are the lowest and highest cells being mined in column $c_{1}+1$, then either $r_{1} \leq r_{3} \leq r_{4} \leq r_{2}$ or $r_{3} \leq r_{1} \leq r_{2} \leq r_{4}$.
4. The number of cells mined in each column must be non-decreasing, then non-increasing.

Here are some examples of areas of land that are mine-able using the parsec:

	XXX.		. . X.
. XXX .	. XX. .		. XXX .
. XXX .	. . XXX	. . X.	XXXXX
. XXX.	. . XXX		. XXX.
. XX .		. . X.

Here are some examples of areas of land that are not mine-able using the parsec:

	X... X	X.X.X	. $\mathrm{X} . \mathrm{X}$.
. X .	XX. XX		XXXXX
. XXX.	XXXXX	X.X.X	XXXXX
. . X	XX. XX		. XXX .
	X... X	X.X.X	X

[^0]With your parsec, you want to determine the maximum number of squares you can excavate at once. Write a program that calculates this for you.

Input

The first line of input will contain two integers: N and S. The following S lines each contain 2 integers $r_{i} c_{i}$, the position of the i th siliconite rich square. Each square is listed at most once.

Output

Output 1 integer, the maximum number of squares.

Sample Input $1 \quad$ Sample Input 2

518
11
12
14
15
21
22
24
25
31
32
33
35
41
44
45
52
55
54

Sample Output 2

Sample Output 1

8
8

Explanation

The below diagrams for sample input 1,2 and 3 respectively. O denotes a siliconite-rich square, and X denotes a mined square.

XX.OO	$0 \ldots$	X
XX.OO	$0 . \mathrm{XX}$	
XXX.O	$0 . \mathrm{XX}$	
X. 00	XXXX	

Constraints

- $1 \leq N \leq 10^{6}$
- $1 \leq S \leq 10^{6}$
- $1 \leq r_{i}, c_{i} \leq N$ for all i

Subtasks

Number	Points	Constraints
1	16	$N, S \leq 200$
2	24	$N, S \leq 2000$
3	21	$N \leq 2000$ and $S \leq 10^{5}$
4	25	$N, S \leq 10^{5}$
5	14	None

[^0]: ${ }^{1}$ Contrary to popular belief, parsecs are not units of length or units of time, but are in fact mining tools.

