Emergency Reinforcement

Input File	Output File	Time Limit	Memory Limit
standard input	standard output	5 seconds	256 MiB

There are N islands (numbered from 1 to N) connected by E two-way bridges (numbered from 1 to $E)$. The bridges were built by one of K companies (numbered from 1 to K).

The i-th bridge connects island A_{i} and B_{i}, and was built by company C_{i}. The same pair of islands could be connected by more than one bridge. No bridge connects an island to itself.

Very soon, a large earthquake will hit the islands and destroy all of the bridges! Each company has X dollars that they can spend to reinforce bridges that they built, saving them from being destroyed by the earthquake. To reinforce the i-th bridge, company C_{i} must spend D_{i} dollars.

The companies would like to minimise the total number of connected components after the earthquake. Two islands are in the same connected component if and only if there exists a way to travel between them using only reinforced bridges. Can you help them?

Note: please read the Scoring section below.

Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $1 \leq N \leq 10000$.
- $1 \leq E \leq 100000$.
- $1 \leq K \leq 5000$.
- $1 \leq X \leq 1000000000$.
- $1 \leq A_{i} \leq N$.
- $1 \leq B_{i} \leq N$.
- $A_{i} \neq B_{i}$, for all i.
- $1 \leq C_{i} \leq K$.
- $1 \leq D_{i} \leq X$.

In this problem, each subtask only has one test case. These test cases are available for download from the Attachments page.

Subtask	Points	Additional constraints
1	5	$N=7$ and $E=8$.
2	5	Between any two islands there is a unique path (sequence of bridges).
3	15	$K=1$.
4	15	$B_{i}=N$, for all i. If $A_{i}=A_{j}$ then $D_{i}=D_{j}$, for all i, j.
5	15	$D_{i}=1$, for all i. Each island is connected to at most two islands.
6	15	$D_{i}=1$, for all i.
7	15	-
8	15	-

You are encouraged to look at the content of the test cases, and to experiment on your computer. Submitting a code which prints an hardcoded solution for one of the test cases is allowed.

Input

- The first line of input contains the four integers, N, E, K and X.
- Then, E lines follow. The i-th line contains the four integers A_{i}, B_{i}, C_{i} and D_{i}.

Output

Output a single line, containing up to E integers, the bridges that you would like to reinforce (in any order).

Scoring

If you:

- list the same bridge more than once, or
- output a number less than 1 or more than E, or
- spend too many dollars of any company,
then your score will be zero for that subtask.
Otherwise, your score will be a sliding scale based on how close your solution is to the optimal solution. Given two parameters $I N F$ and $S U P$, if the number of connected component after the earthquake is X, your score on this subtask will be:

$$
\min (100, \max (0,100 *(S U P-X) /(S U P-I N F)))
$$

Scoring parameters of each subtask are given in the table below:

Subtask	$I N F$	$S U P$
1	1	4
2	382	1000
3	58	176
4	1	3
5	151	1000
6	1	1000
7	1	150
8	1	1100

Sample Input 1

```
101181000
1 27100
1 37100
2 34750
2 3 1 1000
4 34750
453600
563601
56 3602
643603
463604
7 8 3 100
```

Sample Output 1
245711

Sample Input 2

45512345
41112345
12212345
24512345
43212345
32312345

Sample Output 2

1235

Explanation

In Sample Case 1, each company has $X=1000$ dollars to spend:

- Company 1 reinforces the 4 th bridge, costing 1000 dollars.
- Company 3 reinforces the 7 th and 11th bridges, costing $601+100=701$ dollars.
- Company 4 reinforces the 5 th bridge, costing 750 dollars.
- Company 7 reinforces the 2nd bridge, costing 100 dollars.

This gives 5 connected components (two of those components are size 1).

Figure 1: Sample Case 1

In Sample Case 2, each company has $X=12345$ dollars to spend:

- Company 1 reinforces the 1 st bridge, costing 12345 dollars.
- Company 2 reinforces the 2nd bridge, costing 12345 dollars.
- Company 3 reinforces the 5 th bridge, costing 12345 dollars.
- Company 5 reinforces the 3rd bridge, costing 12345 dollars.

This gives 1 connected component.

Figure 2: Sample Case 2

