Metropole

Input File	Output File	Time Limit	Memory Limit
standard input	standard output	1 second	256 MiB

Roads are a thing of the past in the futuristic city of Metropole. Instead, residents travel from station to station using hypergrids.

The city consists of V stations (numbered from 1 to V) that are connected by H hypergrids (numbered from 1 to H).

The i-th hypergrid connects S_{i} stations. If you are at any of those stations, you can pay C_{i} dollars to travel to any of the other stations in that hypergrid.

You are currently at station 1 . What is the fewest dollars you have to spend to get to station V ? You are guaranteed that it is possible to get from station 1 to station V.

Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $2 \leq V \leq 100000$.
- $1 \leq H \leq 100000$.
- $1 \leq S_{i} \leq V$, for all i.
- $1 \leq C_{i} \leq 100000$ for all i.
- $S_{1}+S_{2}+\ldots+S_{H} \leq 300000$

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	12	$S_{i}=2$, for all i. That is, every hypergrid connects exactly two cities.
2	28	$S_{i} \leq 4$, for all i. That is, every hypergrid connects at most 4 cities.
3	46	$C_{i}=1$, for all i. That is, every hypergrid costs exactly 1 dollar to use.
4	14	No further constraints apply.

Input

The first line of input contains the two integers, V and H.
Then, H pairs of lines follow. The first line in the i-th pair contains the integer C_{i}. The second line in the i-th pair begins with S_{i}, followed by S_{i} integers, describing the stations that the i-th hypergrid connects. No city is listed more than once in each hypergrid.

Output

The output should contain a single integer: the fewest dollars you have to spend to get from station 1 to V.

Note: The answer can be quite large. Consider using long long int.

```
Sample Input 1
6
20
2 15
70
2 1
5 0 0 0
246
10
2 54
30
2 24
```


Sample Output 1

5030

Sample Input 2

64
30000
3134
100
46524
90000
223
40
3256

Sample Output 2

30100

Explanation

In sample case 1 , one path you can take is $1 \rightarrow 5 \rightarrow 4 \rightarrow 6$, costing $20+10+5000=5030$ dollars. This is the minimum possible.

In sample case 2 , one path you can take is $1 \rightarrow 4 \rightarrow 6$, costing $30000+100=30100$ dollars. This is the minimum possible.

Figure 1: Diagrams for the two sample cases

